

Using Data to Improve Business Processes KEITH HOGAN - HUNTSVILLE UTILITIES JEREMY INDRIDASON - TRYNZIC

Session Agenda

AMI Journey
 Opportunities and Challenges for Change
 Tools & Concepts with Trynzic
 Use Cases/Scenarios

About Huntsville Utilities HUNTSVILLE UTILITIES

Huntsville Utilities is a not-for-profit, public utility owned by the City of Huntsville, Alabama serving the residents of Huntsville and Madison County. We currently have approximately 213,000 electric, 105,000 water, and 62,000 natural gas customers.

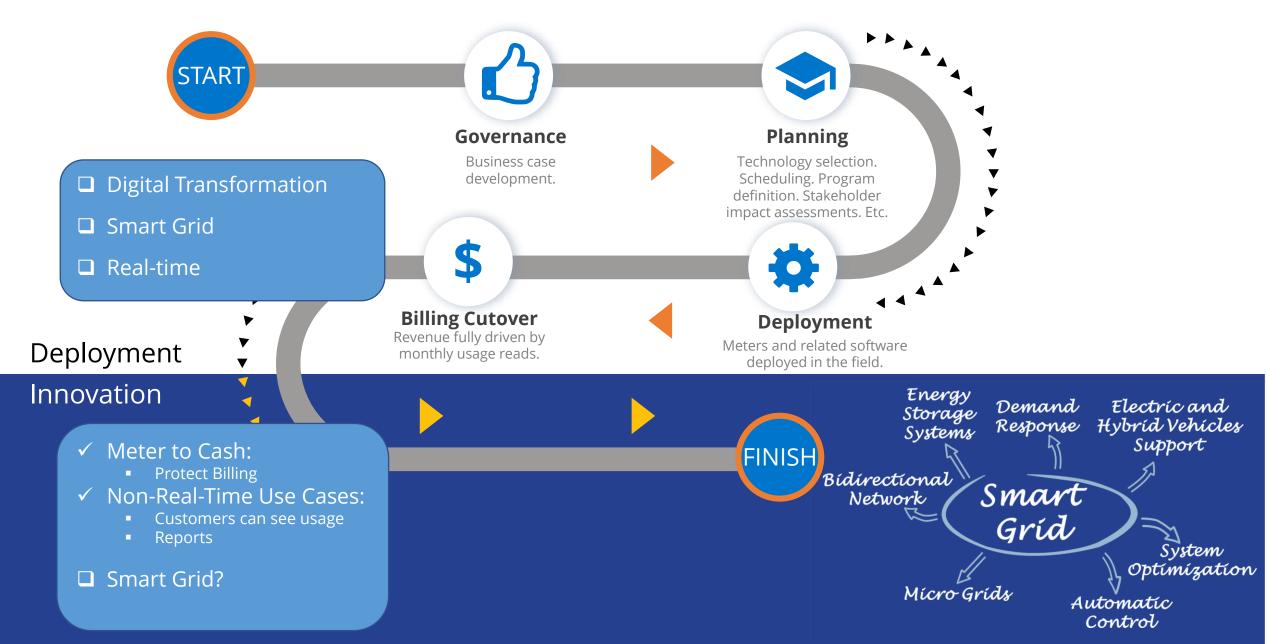
Our mission is to strengthen trust in Huntsville Utilities, our vision is to deliver excellent customer experiences, and our values are to do what's right, build community, and get better every day

Our vision is simple. To bridge the gap between IoT data and smarter business processes, no matter the industry. Trynzic is the premier IoT platform for event-driven work.

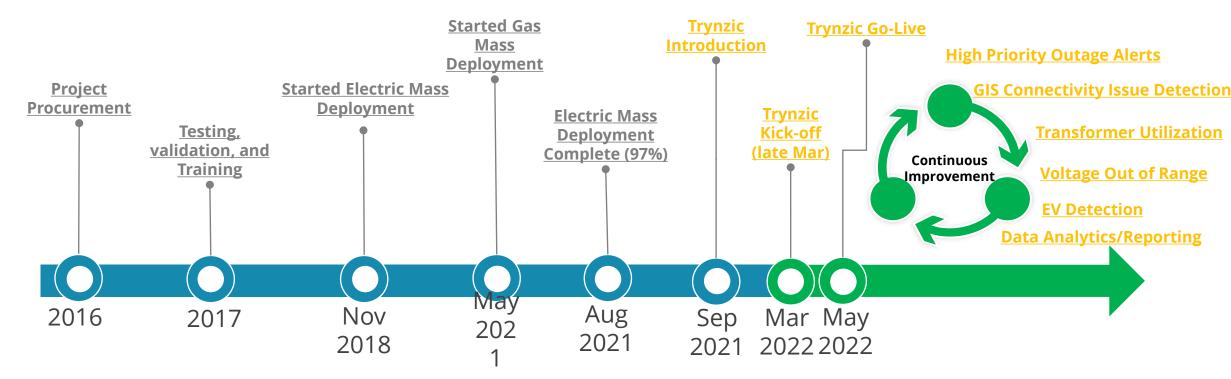
Built on Microsoft Azure, Trynzic's software platform combines a scalable architecture and serverless computing to give Customers an affordable way to sense, triage, and act upon a myriad of issues in their grid.

Bios

Keith Hogan is an Engineer II at Huntsville Utilities in Huntsville, AL. Keith is from Athens, AL about 30 minutes west of Huntsville, AL. He started with Huntsville Utilities as a summer hire right out of high school and continued working at Huntsville Utilities throughout college as a Co-Op student. After graduation, he took a job at Arab Electric, Inc in Arab, AL where he was promoted to the Assistant General Manager. Keith has been back with Huntsville Utilities for the past 6 years working as the Project Engineer on their AMI deployment project. Keith has 15 years of experience in the public power industry in both the municipal and member owned cooperative settings.



Jeremy Indridason is Vice President of Products & Services at Trynzic, which brings the serverless computing power of the cloud to use your data to identify and prioritize anomalous events, and execute business processes that enable meaningful digital transformation.


In his role at Trinzic, Jeremy leads the Product Management, Software Engineering and Services organizations, focusing on collaborating across the industry to get the best ideas to market and delighting customers with extraordinary customer experiences – closing the gap between AMI and ROI.

AMI Journey

Typical AMI Journey

HU AMI Journey

<u>Assumptions</u>

- Three-year deployment with Electric, Gas, and Water AMI endpoints being deployed together with Gas and Water lagging behind only one month.
- Requested bugs, hot fixes, etc. would be fixed each upgrade cycle
- New water pit module delivery

Customer Service Entry Repair

Promised Outcomes

- Access to granular customer usage data
- Reduced truck roll costs for disconnects for non-pay
- Usage insight prompting proactive alert notification to customers
- System performance and alert notifications

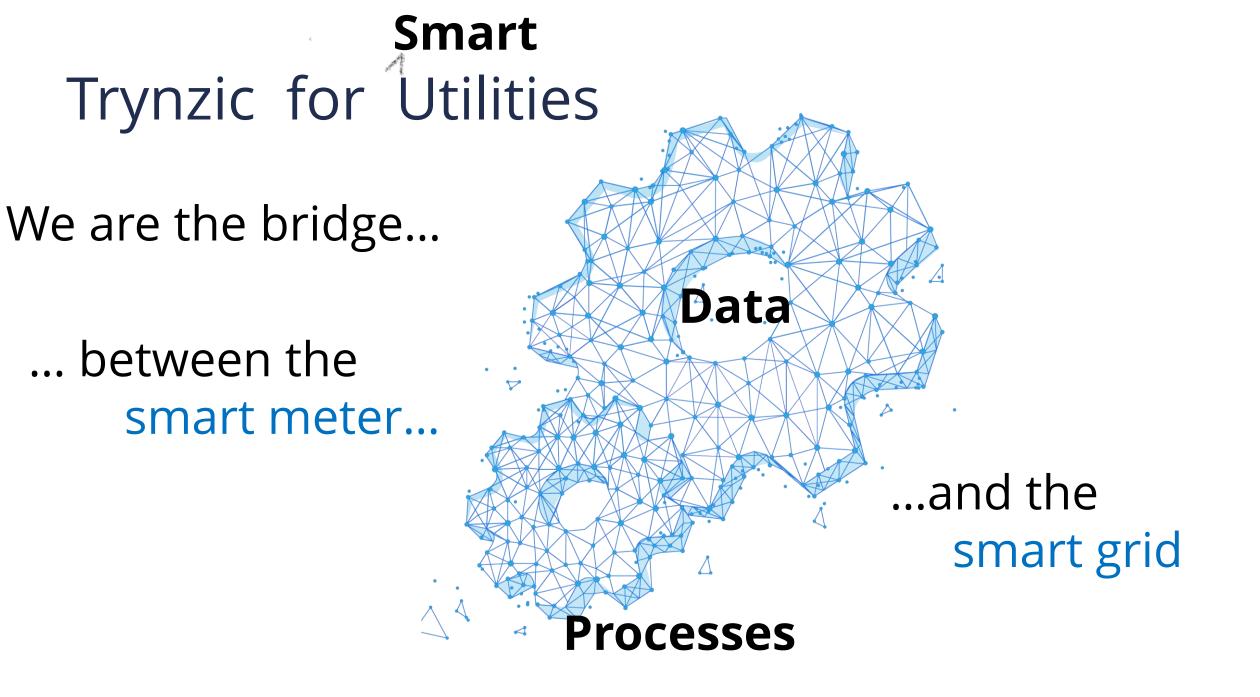
<u>Reality</u>

- Rollout is 5 years on-going
- Data and business process is harder than you realize
- Ever changing business environment adds complexity (internal and external)
- Big data requires new skills and new tools

Challenges & Opportunities

Challenges

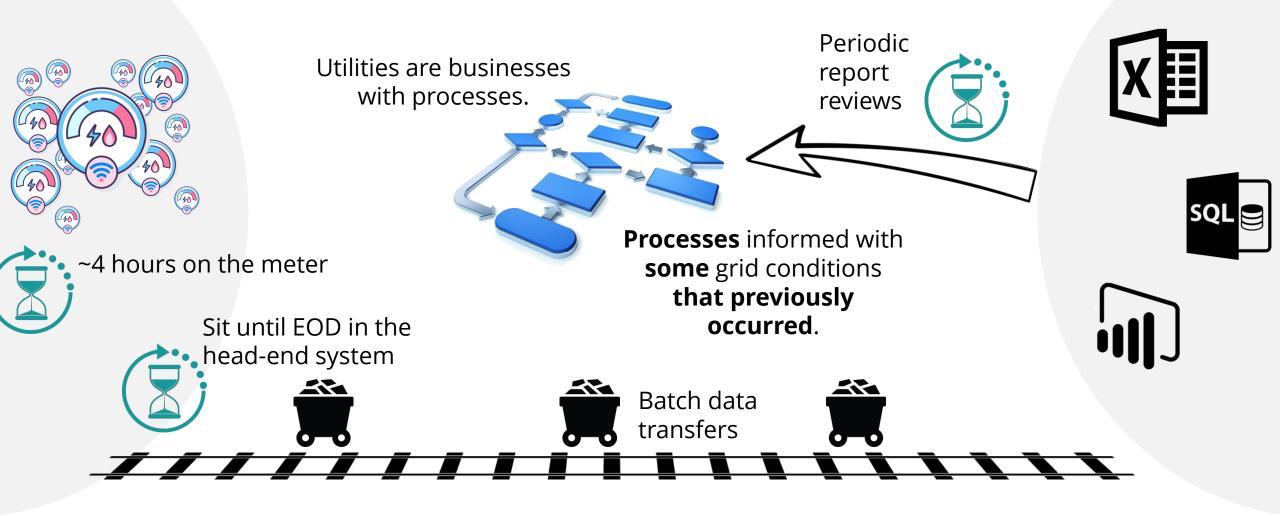
Opportunities


Data Silos

- Unchecked meter events / noise / alert fatigue
- Difficulty integrating different systems that own the data
- Tracking and optimizing processes and workflows
- Identifying bottlenecks and inefficiencies in manual administration tasks
- □ IT required to generate reports for every analysis performed

Combine pertinent data from different systems into one place

- Clear the clutter and focus on the important alerts by tailoring alert parameters to utility specific desires
- Establish dynamic workflows across multiple departments to drive to the end goal without dropping items.
- Run analytics to identify the inefficiencies across all systems and departments based on completion times of action items in process workflows
- Give non-IT employees the tools to query and report on the data they need with relative ease

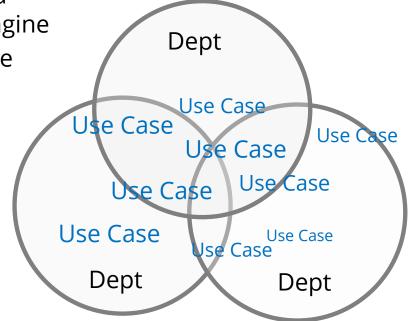

Tools & Concepts

Current State

Advanced Metering Infrastructure

Traditional Data Analysis Tools

Path to the Future


- Stream data analytics engine
- Rules engine

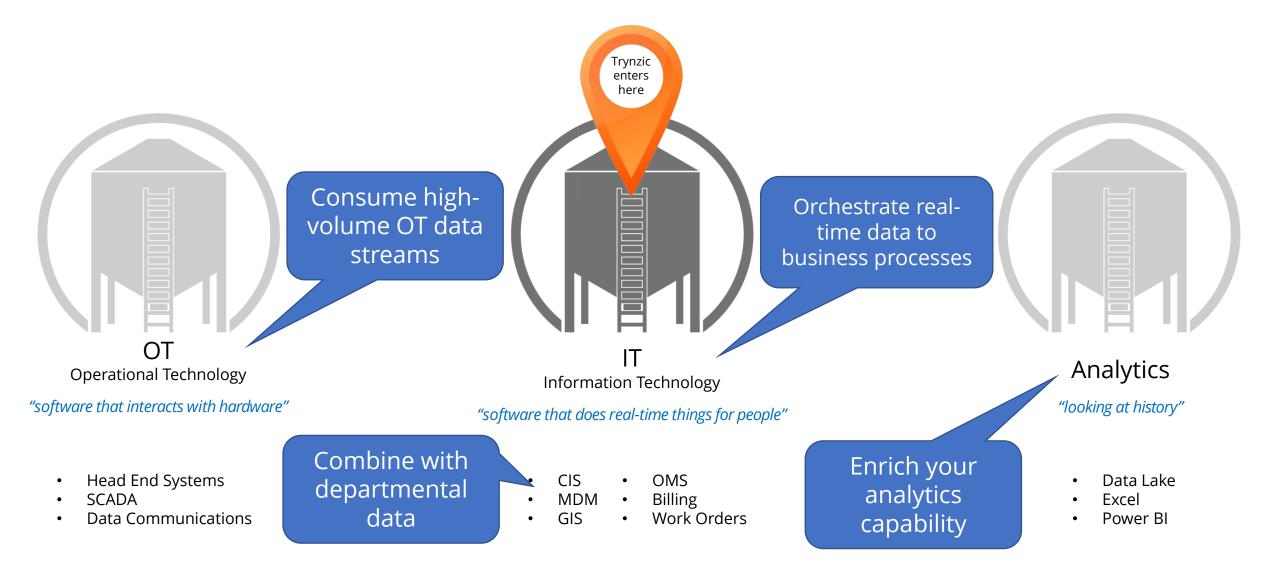
Advanced Metering

- AMI Meters
- Backhaul

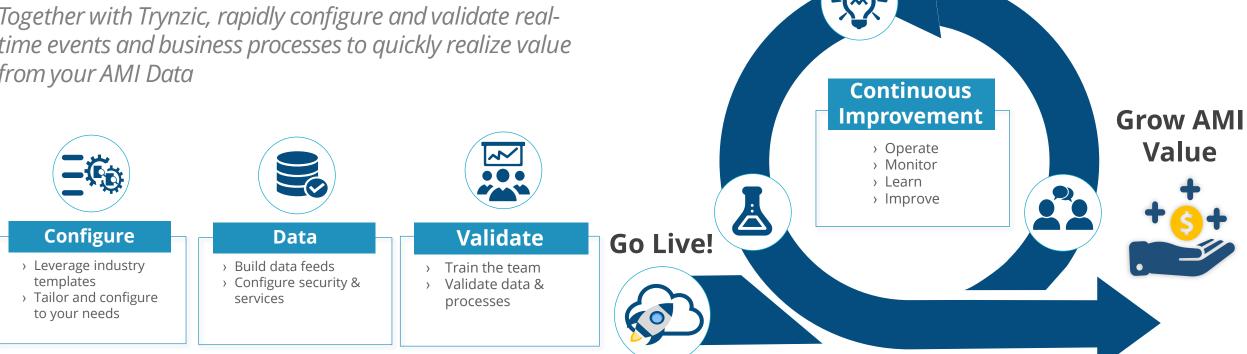
40

• Software (head end, etc.)

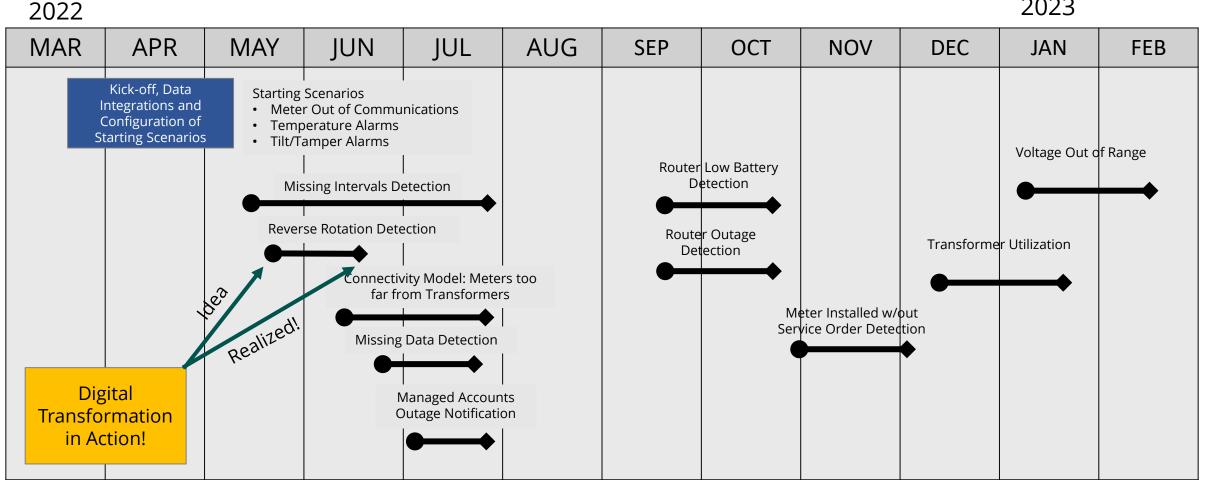
- Integration engine
- Canonical enterprise data model
- Scalability
- Compute & Storage Cost control


- Workflow engine w/ designer
- Orchestration engine
- Case management
- Collaboration

Business Processes

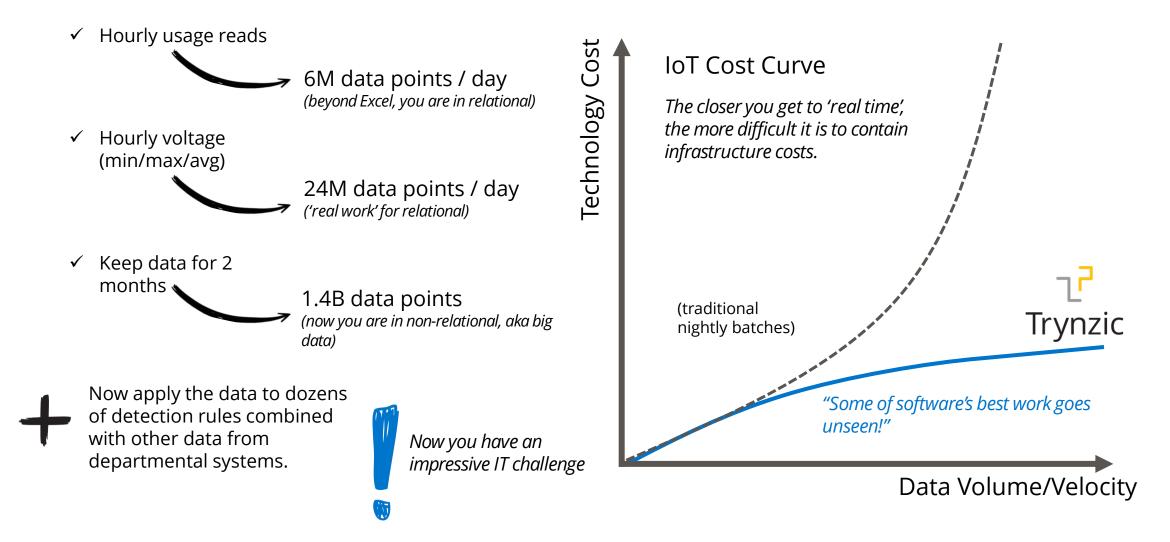

- CIS
- MDMS
- Field Mobile
- OMS
- GIS
 - Analytics (BI)

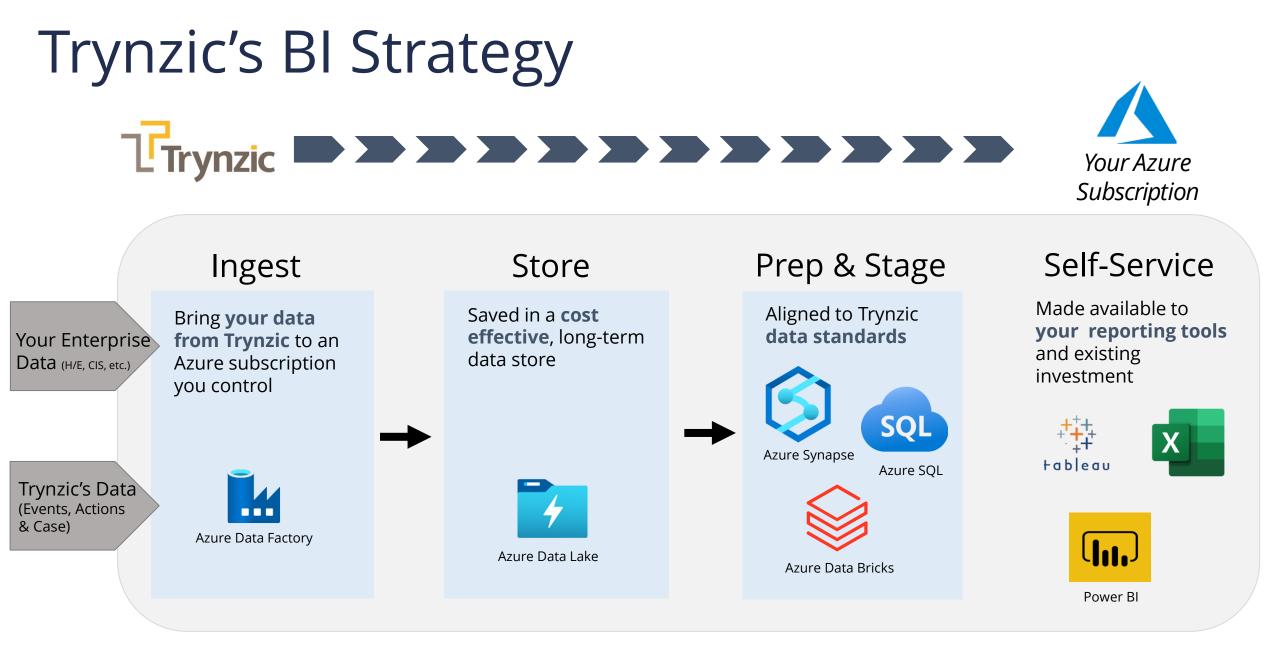
System of Systems


Huntsville Utilities – Trynzic Implementation SIMPLE · RAPID · **EXTEND VALUE**

Together with Trynzic, rapidly configure and validate realtime events and business processes to quickly realize value from your AMI Data

Go Live is just the beginning - with Trynzic your team is in full control. Continue to improve your operations and grow your AMI investment as fast as you need!


Iterative Approach in Reality



2023

Data Volume Challenges

250,000 electric meters

Analytics Pilot

Problem Statement

The difficulty of being able to access critical business data in a consistent, centralized manner is creating barriers to innovation and productivity across multiple areas of the business.

Scope

The focus of this project proposes to do a pilot of data aggregation that leverages existing efforts already accomplished with the vendor Trynzic and it's software platform.

Big Data in the Cloud

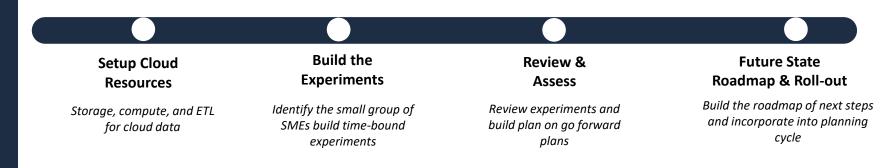
Leverage the scale of cloud technologies to build common repository of data

Benefits

- Enables data access across multiple siloes/systems that is not cost effective today
- Begins common standards and understanding of data
- Limited pilot proves the concept before broader investment

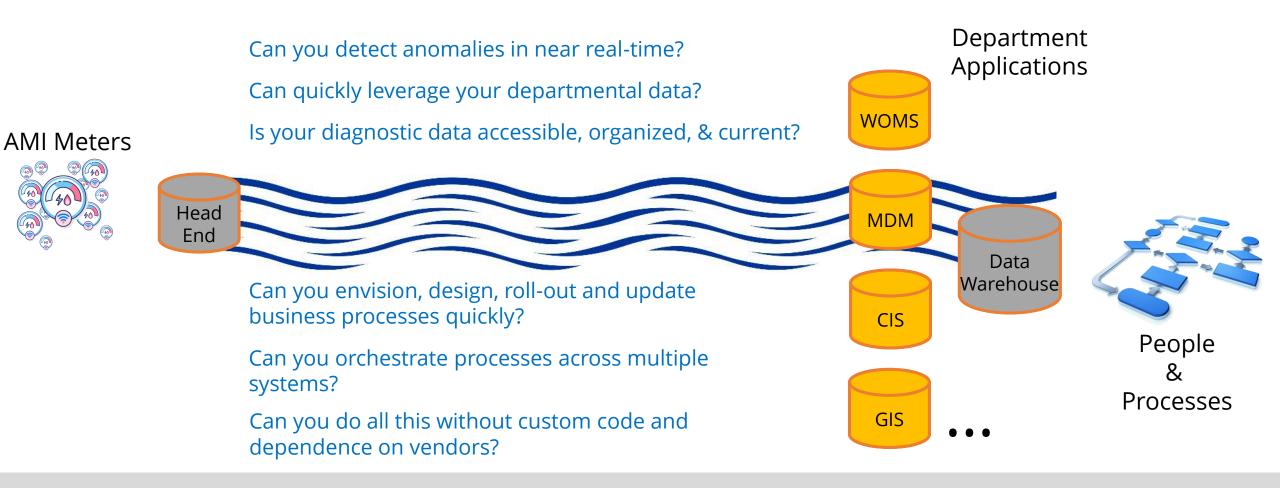
Critical Milestones

Identify a small community of power users for learning and experimentation


Show what we can do

Target 3 references reports or dashboards to be built Build Plan for Next Steps

Leverage pilot learning to build a program roadmap for change


- New technology and assoc'd learning curve
- Technology aspects of data governance could get ahead of organization and culture changes and result in re-work

Dashboard Example

Trynzic Events					only includes i	results fron	n AMI Meters	8/1/2023 🗰 9/13/2023 🛗						
EventDisplayNun	nber ● 29C-	004	2JN-005				00							
	15			Event Type										
3				Ya	1 Det	X	•	(+)	Electric Meter Out of Communications					
31			1		A.	A AN		Feeder						
4	n Mark	31		1	larvort	Trach	·	\bigcirc	All			\sim		
1 pm		5	18		larvest	Meridian								
	Athens	/				M	oores Mill		Event State					
		TP			JEN S	SSV.	•					\sim		
ADT PARTY					d		Multiple selections							
				TIL	0	Juntsvil		Meter	Meter					
	1 1	1		Mad		0								
- La - La	6					53	Starter 1	Scottsbo	Search			Q /		
LAN	125		1		Redstone	. 10	P-HORE INF	Scottsbe						
				11.	Arsenal	S.L		(BL	ank)	42				
Microsoft Bing	Decatur			24	1PA -		© 2023 TomTom,	© 2023 Microsoft Corporation Terms	Open Ev	ent Count	Closed Ev	vent Count		
			\//h									7 G ···		
Service Location	Trynzic ID	URL	Meter	URL	Transformer	Feeder	Name	Created Date	Closed Date	Event State	Duration (mins)			
6101453277	PN3-001	Q	346678	P	75112642	OAK224	Electric Meter Out of Communications	8/6/23 12:15:13 PM	8/8/23 7:15:18 AM	No Longer Detected	2580			
6101455735	29C-004	Q	346692	B	30145119	SUN234	Electric Meter Out of Communications	8/6/23 11:15:13 AM	8/8/23 7:15:17 AM	No Longer Detected	2640			
	MMR-005	Q	384151	Q			Electric Meter Out of Communications	8/29/23 8:15:02 PM	9/8/23 7:15:02 AM	No Longer Detected	13620			
	W6P-002	Q	412771	0			Electric Meter Out of Communications	8/8/23 5:15:20 PM	8/16/23 7:15:23 AM	No Longer Detected	10920			
6101154545	ZHW-003	Q	427421	B	30135578	PAR214	Electric Meter Out of Communications	9/2/23 5:15:22 AM	9/2/23 7:15:23 AM	No Longer Detected	120			
6101154545	2JN-005	Q	427421	Q	30135578	PAR214	Electric Meter Out of Communications	9/12/23 5:15:02 AM	9/12/23 7:15:03 AM	No Longer Detected	120			
	MRM-006	Q	432436	Q			Electric Meter Out of Communications	8/6/23 1:15:14 PM	8/8/23 7:15:18 AM	No Longer Detected	2520			
6101149387	P9Z-001	Q	434604	Q	30149054	MOUG244	Electric Meter Out of Communications	8/30/23 8:15:23 AM	8/30/23 3:15:17 PM	No Longer Detected	420			
	BBV-005	@	515196	© -			Electric Meter Out of Communications	9/10/23 1:15:02 PM	9/12/23 7:15:03 AM	No Longer Detected	2520			

Think about your situation

Scenarios at Huntsville

Huntsville Utilities Realized Scenarios

Reverse Rotation
Transformer Utilization
Connectivity Model Issue
Voltage Out of Range

Reverse Rotation

Problem

 Identifying & resolving reverse energy flow with different meter forms and programs across multiple departments

Challenges

- Difficult to identify the important instances of the event
- Difficult to document resolution steps
- Difficult to track and be cognizant of repeat offenders

Direct Benefits

• We were able to identify and resolve certain reverse rotation events that were generated due to bottom fed meter bases. <u>Resolving these allows us to focus on actual reverse rotation events.</u>

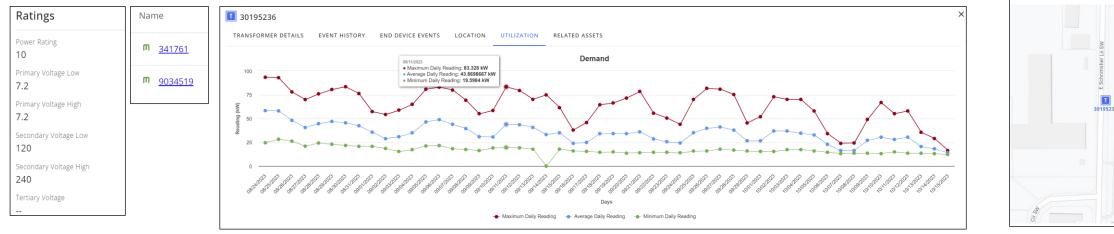
Reverse Rotation

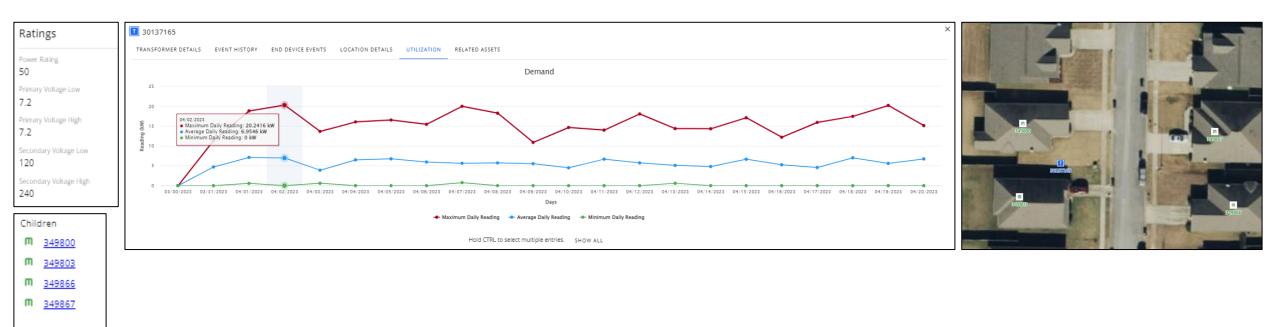
Reverse Rotation (K base) SAVE AS Event ID ~ Event Type (1) Reverse Rotation (K For ~ Created ~ + Filters APPLY FILTERS								Reverse Rotation (S form) SAVE AS Event ID Event Type (1) Reverse Rotation (S Forms) Created + Filters APPLY FILTERS								
	Event ID	Created ↑	Event Type	Meter	Meter Form	Meter Status	AMI Meter Status		Rev	erse Rotation (S Porms)						
	<u>P]7-000</u>	🔺 Wed, May 18, 2022, 1:00 AM	Reverse Rotation (K Forms)	9053077	16k/15k/14k	InService	Normal		Event ID	Created 个		Event Type	Meter	Meter Form	Meter Status	AMI Meter Status
	6FV-000	🔺 Wed, May 18, 2022, 1:00 AM	Reverse Rotation (K Forms)	<u>9031606</u>	16k/15k/14k	InService	Normal		5LG-000	Sat, May 7, 2022, 7:00 PM		Reverse Rotation (S Forms)	<u>374311</u>	2se	InService	Normal
	<u>6V8-000</u>	🛕 Fri, Oct 14, 2022, 10:30 AM	Reverse Rotation (K Forms)	<u>9051744</u>	16k/15k/14k	InService	Normal		JRZ-000	Sat, May 7, 2022, 7:00 PM		Reverse Rotation (S Forms)	<u>321400</u>	2s	InService	Normal
	<u>B18-000</u>	🛕 Fri, Oct 14, 2022, 12:30 PM	Reverse Rotation (K Forms)	<u>319530</u>	2k	InService	Normal		92T-000	Sat, May 7, 2022, 7:00 PM		Reverse Rotation (S Forms)	437643	25	InService	Normal
	NLP-000	A Fri, Oct 14, 2022, 12:30 PM	Reverse Rotation (K Forms)	436025	2k	InService	Normal		221 000	58, mg 7, 2022, 7.00 m		nerenze notation (z ronniz)	107010			
	<u>9M3-000</u>	🔺 Tue, Oct 18, 2022, 3:30 PM	Reverse Rotation (K Forms)	<u>9036759</u>	16k/15k/14k	InService	Normal		<u>N7Q-000</u>	Sat, May 7, 2022, 7:00 PM		Reverse Rotation (S Forms)	<u>544233</u>	2s	InService	Normal
	<u>GTT-000</u>	🛕 Tue, Nov 8, 2022, 8:30 AM	Reverse Rotation (K Forms)	<u>564526</u>	2k	InService	Normal		<u>L89-000</u>	Sat, May 7, 2022, 7:00 PM		Reverse Rotation (S Forms)	<u>9035334</u>	16s	InService	Normal
	<u>WJY-002</u>	🛕 Tue, Jan 31, 2023, 5:30 AM	Reverse Rotation (K Forms)	9032040	16k/15k/14k	InService	Normal		224-000	Sat, May 7, 2022, 7:00 PM		Reverse Rotation (S Forms)	324954	25	InService	Normal
	<u>Z8H-002</u>	🔺 Mon, Feb 27, 2023, 8:30 PM	Reverse Rotation (K Forms)	<u>564516</u>	2k	InService	Normal									
	<u>2JG-002</u>	🔺 Wed, Mar 8, 2023, 3:30 PM	Reverse Rotation (K Forms)	<u>374695</u>	2k	InService	Normal									

Transformer Utilization

Problem

- We had no visibility into the health and utilization of our distribution transformers.
- With Trynzic we were able to combine our GIS connectivity model with our AMI data to sum up children meter interval data to calculate transformer utilization.


Challenges


 Dialing in the appropriate parameters to detect over/under utilization on transformers. – Season, Power Rating, KW thresholds, etc.

Direct Benefits

- Monitor all distribution transformers based purely on data already available.
- Detect/alert proper teams when AMI usage data + GIS model indicates overloaded transformers to proactively address
- This ability combined with known customers to have electric vehicles (EV) can be powerful

Transformer Utilization

341761 M

9034519

Keyboard shortcuts

Connectivity Model Issues

Problem

Many meters are connected to the incorrect transformer in the GIS data base. This needs to be resolved for our new OMS, Mapping, and Trynzic event definitions to work correctly.

Challenges

It is hard to identify the issues, and more difficult to catch the errors <u>as they happen</u>.

Direct Benefits

- Quickly identify issues with the transformer and meter relationship in the connectivity model.
- Allows for quicker discovery and resolution to minimize bad data for other systems it rely on the data.

Connectivity Model Issues

	ILB-000 - Transformers with all Service Points more than 80m away ags transformers whereby all of their service points are greater than 80 meters (~263 ft) away.										
GENE	RAL DETECTION ASSET DETAILS WORKFLOW HISTORY LOCATION V	OLTAGE									
	ent Processing Time Last Completed Event Processing Time pr 22, 2023, 4:45 AM Fri, Apr 21, 2023, 4:45 AM										
	meter ver Grid Configuration - Service Point Distance		Č O		c						
~	Setting Service Point Distance * This setting is required. AT DETECTION	Operator >		Value 80							
	Distance from Transformer: 261.57 meters	(or 858 Feet)	0								

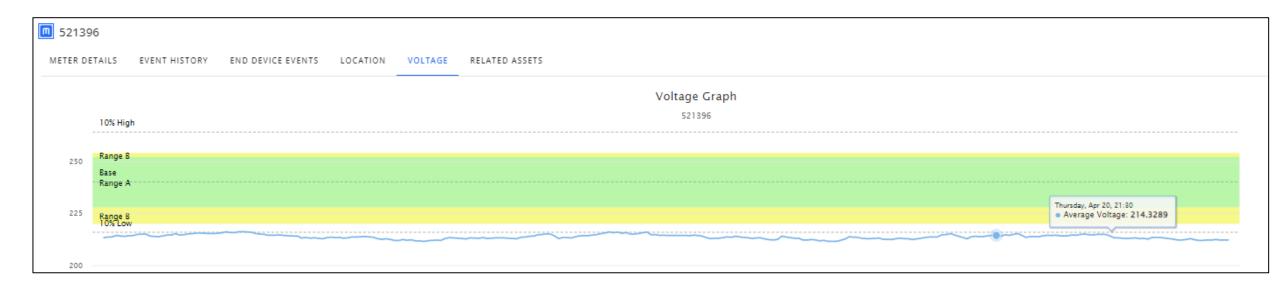
The transformer is in blue and the meter is in green and white. This meter is five spans

away from the transformer it is paired with in the GIS database.

Voltage out of Range

Problem

Our AMI headend has little visibility into voltage measurements in a meaningful way. Voltage values are individually based per meter with no tie to what transformer or circuit feeds the meter. This can overwhelm operators and can be labor intensive to drill into each event to determine the proper voltage. Configuring tiered voltage ranged events is impractical in our AMI headend.


Challenges

- Data is spread across multiple systems AMI Headend, MDM, GIS, etc.
- Determining the appropriate thresholds of voltage out of range boundaries
- New tools for monitoring the grid creates learning curve and change

Direct Benefits

- Detecting transformer issues with the AMI data already available
- Continuously monitoring/alerting based on near-real time interval meter data
- End-to-end tracking from identification to resolution

Voltage out of Range

Thank you!

Questions?

Jeremy.Indridason@trynzic.com www.trynzic.com 701-404-2836

<u>Keith.Hogan@hsvutil.org</u> <u>www.hsvutil.org</u> 256-535-1380